

# Гибридный инвертор



SUN-12K-SG01LP1-EU SUN-14K-SG01LP1-US

SUN-16K-SG01LP1-EU





#### Оглавление

| Информация о руководстве                                                         | 4   |
|----------------------------------------------------------------------------------|-----|
| Как пользоваться этим руководством                                               | 4   |
| 1. Инструкция по безопасности                                                    | 4   |
| 2. Введение                                                                      | 5   |
| 2.1 Обзор продукта                                                               | 5   |
| 2.2 Размеры устройства                                                           | 6   |
| 2.3 Особенности продукта                                                         | 7   |
| 2.4 Базовая системная архитектура                                                | 7   |
| 3. Установка                                                                     | 8   |
| 3.1 Комплектация                                                                 | 8   |
| 3.2 Инструкции по монтажу                                                        | 8   |
| 3.3 Подключение батареи                                                          | 10  |
| 3.3.1 Определение функционального порта                                          | 12  |
| 3.3.3 Подключение датчика температуры для свинцово-кислотн                       |     |
| аккумулятора                                                                     |     |
| 3.4 Подключение к сети и подключение резервной нагрузки                          |     |
| 3.5 Подключение фотоэлектрических модулей                                        |     |
| 3.5.1 Выбор фотоэлектрического модуля                                            |     |
| 3.5.2 Соединение проводов модуля PV PV                                           |     |
| 3.6 Подключение TT                                                               |     |
| 3.6.1 Подключение счетчика                                                       |     |
| 3.7 Заземление (обязательно)                                                     |     |
| 3.8 Wi-Fi соединение                                                             |     |
| 3.9 Система проводки для инвертора                                               |     |
| 3.10Типовая схема применения дизель-генератора                                   | 24  |
| 3.11Схема параллельного подключения одной фазы (230 В                            | 0.5 |
| переменного тока)                                                                |     |
| 3.12Схема параллельного соединения с расщепленной фазой (120 В переменного тока) |     |
| 3.13Параллельное подключение для 230/400 трехфазного тока                        | 28  |
| 4. ЭКСПЛУАТАЦИЯ                                                                  | 32  |
| 4.1 Включение/выключение питания                                                 |     |
| 4.2 Панель управления и дисплея                                                  | 32  |
| 5. Иконки ЖК-дисплея                                                             |     |
| 5.1 Главный экран                                                                |     |
| 5.1.1 Блок-схема работы ЖК-дисплея                                               |     |
| 5.2 Кривая солнечной энергии                                                     | 35  |



| 5.3          | График - Солнечная энергия, нагрузка и сеть36 |    |
|--------------|-----------------------------------------------|----|
| 5.4          | Меню настройки системы                        | 37 |
| 5.5          | Меню основных настроек                        | 37 |
| 5.6          | Меню настройки батареи                        | 38 |
| 5.7          | Меню настройки режима работы системы          | 40 |
| 5.8          | Меню настройки сети                           | 43 |
| 5.9          | Меню настройки порта генератора               | 44 |
| 5.10         | ЭМеню настройки дополнительных функций        | 45 |
| <b>5.1</b> 1 | I Меню настройки информации об устройстве     | 45 |
| 6.           | Режимы                                        | 46 |
| 7.           | Информация об ошибках и обработка             | 49 |
| 8.           | Ограничение ответственности                   | 52 |
| 9.           | Технические характеристики                    | 53 |
| 10.          | Приложение І                                  | 55 |
| 5.           | Приложение II                                 | 57 |



# Информация о руководстве

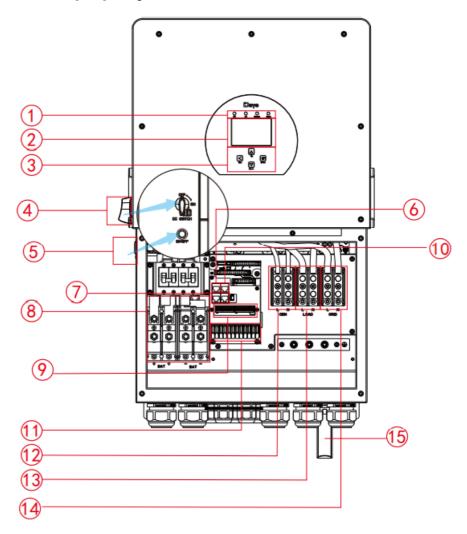
Руководство в основном описывает информацию о продукте, рекомендации по установке, эксплуатации и техническому обслуживанию. Руководство не включает в себя полную информацию о (PV) системе.

# Как пользоваться этим руководством

Выберите кабель с достаточной пропускной способностью для подключения, чтобы избежать чрезмерных потерь в линии и неправильной оценки контроллера.

Прочтите руководство и другие сопутствующие документы перед выполнением каких-либо операций с инвертором. Документы должны храниться бережно и всегда быть доступными. Содержание может периодически обновляться или пересматриваться в связи с разработкой продукта. Информация в данном руководстве может быть изменена без предварительного уведомления. Последнюю версию руководства можно получить через service@deye.com.cn.

# 1. Инструкция по безопасности


- В этой главе содержатся важные инструкции по технике безопасности и эксплуатации. Прочтите и сохраните данное руководство для дальнейшего использования.
- Перед использованием инвертора прочтите инструкции и предупреждающие знаки на аккумуляторе и соответствующие разделы руководства по эксплуатации.
- Не разбирайте инвертор. Если вам требуется техническое обслуживание или ремонт, обратитесь в профессиональный сервисный центр.
- Неправильная повторная сборка может привести к поражению электрическим током или возгоранию.
- Чтобы снизить риск поражения электрическим током, отсоедините все провода, прежде чем приступать к обслуживанию или очистке. Выключение устройства не уменьшит этот риск.
- Внимание: только квалифицированный персонал может заниматься установкой аккумуляторных батарей.
  - Никогда не заряжайте замерзшую батарею.
- Для оптимальной работы этого инвертора, пожалуйста, следуйте требуемой спецификации, чтобы выбрать соответствующий размер кабеля. Очень важно правильно эксплуатировать этот инвертор.
- Будьте очень осторожны при работе с металлическими инструментами около аккумуляторных батарей или рядом с ними. Падение инструмента может вызвать искру или короткое замыкание в батареях или других электрических деталях, а также привести к взрыву.
- Если вы хотите отключить клеммы переменного или постоянного тока, строго следуйте процедуре установки. Подробную информацию см. в разделе «Установка» данного руководства.
- Инструкции по заземлению этот инвертор должен быть подключен к системе постоянного заземления. При установке данного инвертора обязательно соблюдайте местные требования и правила.
- Никогда не вызывайте короткое замыкание на выходе переменного тока и на входе постоянного тока. Не подключайтесь к сети при коротком замыкании на входе постоянного тока.



## 2. Введение

Это многофункциональный инвертор, сочетающий в себе функции инвертора, солнечного зарядного устройства и зарядного устройства для аккумуляторов, обеспечивающий бесперебойную работу при портативном размере. Его всеобъемлющий ЖК-дисплей предлагает пользователю настраиваемые и легкодоступные кнопки, такие как зарядка аккумулятора, зарядка от сети переменного тока/солнечной батареи и приемлемое входное напряжение в зависимости от различных приложений.

#### 2.1 Обзор продукта



1: Индикаторы инвертора

7: Параллельный порт

13: Нагрузка

2: ЖК-дисплей

8: Входные разъемы батареи

14: Сеть

3: Функциональные кнопки

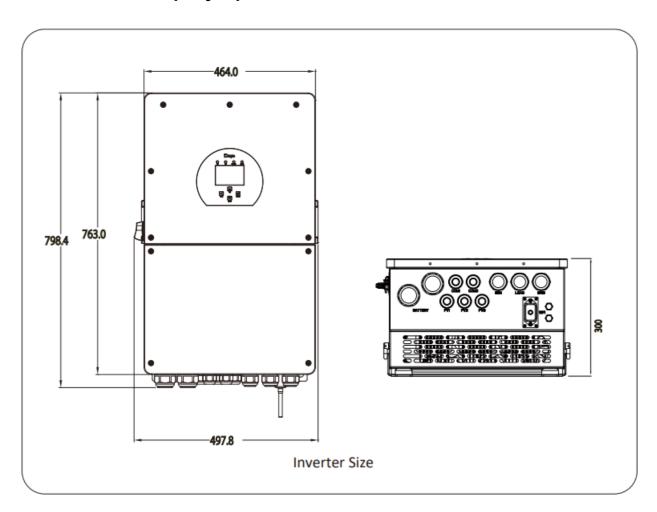
9: Функциональный порт

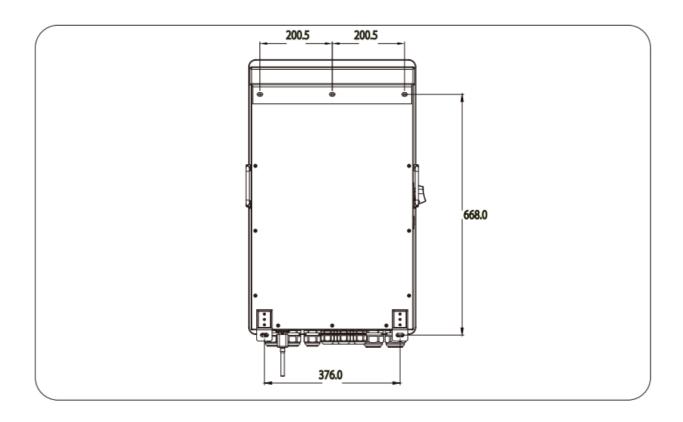
15: Wi-Fiинтерфейс

4: Переключатель постоянного тока 10: CAN Порт

5: Кнопка включения/выключения

11: Вход PV с двумя MPPT


питания


6: Порт RS 485

12: Вход генератора



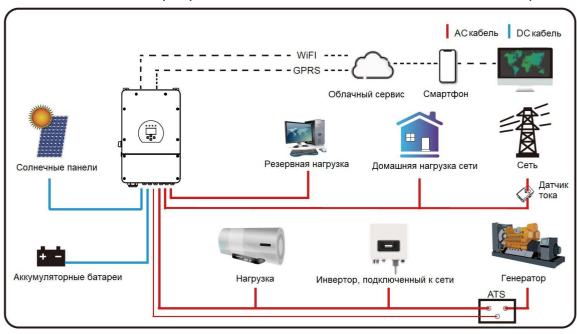
# 2.2 Размеры устройства







#### 2.3 Особенности продукта

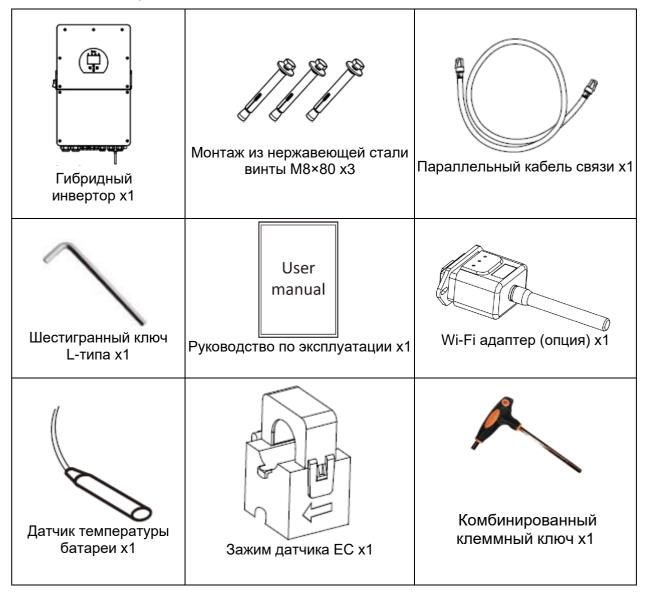

- Самопотребление и подача в сеть;
- Автоматический перезапуск во время восстановления переменного тока;
- Программируемый приоритет питания от батареи или сети;
- Программируемые несколько режимов работы: от сети, от сети и ИБП;
- Настраиваемый ток/напряжение зарядки аккумулятора в зависимости от приложений с помощью настройки ЖК-дисплея;
- Настраиваемый приоритет зарядного устройства переменного тока/солнечной батареи/генератора с помощью настройки ЖК-дисплея;
  - Совместимость с сетевым напряжением;
  - Защита от перегрузки/перегрева/короткого замыкания;
- Интеллектуальная конструкция зарядного устройства для оптимизации работы аккумулятора;
  - Функция ограничения предотвращает отдачу избыточной мощности в сеть.
  - Поддержка мониторинга WIFI и 2 встроенных MPPT;
- Умная настраиваемая трехступенчатая зарядка MPPT для оптимизации работы аккумулятора;
  - Функция времени использования;
  - Функция умной загрузки.

### 2.4 Базовая системная архитектура

На следующем рисунке показано основное применение этого инвертора. Он также включает в себя следующие устройства, чтобы иметь полную работающую систему:

- Генератор или сеть
- Солнечные панели

Проконсультируйтесь со своим системным интегратором относительно других возможных системных архитектур в зависимости от ваших требований. Этот инвертор может питать все виды бытовой техники в домашних или офисных условиях, включая электроприводы, такие как холодильник и кондиционер.





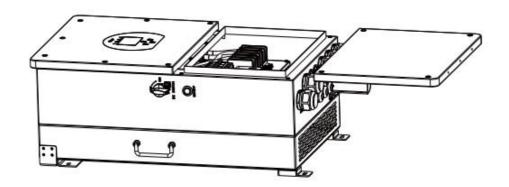

## 3. Установка

#### 3.1 Комплектация

Пожалуйста, проверьте следующую таблицу, чтобы увидеть, все ли детали включены в содержимое:

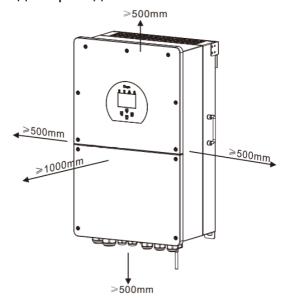


## 3.2 Инструкции по монтажу


## Меры предосторожности при установке

Этот гибридный инвертор предназначен для использования вне помещений (IP65). Пожалуйста, убедитесь, что место установки соответствует следующим условиям:

- Не под прямыми солнечными лучами
- Не в местах хранения легковоспламеняющихся материалов.
- Не во взрывоопасных зонах.
- Не в прохладном воздухе напрямую.
- Не рядом с телевизионной антенной или антенным кабелем.
- Не выше высоты около 2000 метров над уровнем моря.
- Не в условиях осадков или влажности (> 95%)



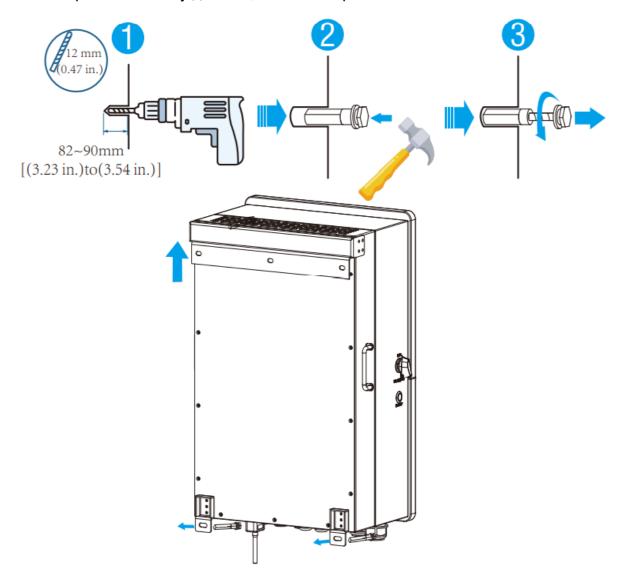

Пожалуйста, ИЗБЕГАЙТЕ попадания прямых солнечных лучей, дождя, скопления снега во время установки и эксплуатации. Перед подключением всех проводов снимите металлическую крышку, открутив винты, как показано ниже:



Прежде чем выбрать место для установки, примите во внимание следующие моменты:

- Пожалуйста, выберите вертикальную стену с несущей способностью для установки, подходящую для установки на бетон или другие негорючие поверхности, установка показана ниже.
- Установите этот инвертор на уровне глаз, чтобы ЖК-дисплей всегда был виден.
- Для обеспечения оптимальной работы температура окружающей среды должна быть в пределах от -25 до 60 °C.
- Следите за тем, чтобы другие предметы и поверхности располагались так, как показано на схеме, чтобы гарантировать достаточное рассеивание тепла и иметь достаточно места для проводов.




Для надлежащей циркуляции воздуха и отвода тепла оставьте зазор прибл. 50 см в сторону и около 50 см выше и ниже блока. И 100 см спереди.



## Монтаж инвертора

Помните, что этот инвертор тяжелый! Пожалуйста, будьте осторожны при извлечении из упаковки. Выберите рекомендуемую буровую головку (как показано на рисунке ниже), чтобы просверлить 4 отверстия в стене глубиной 82-90 мм.

- 1. Используйте подходящий молоток, чтобы вставить расширительный болт в отверстия.
- 2. Перенесите инвертор и, удерживая его, убедитесь, что вешалка направлена на дюбель, закрепите инвертор на стене.
  - 3. Закрепите головку дюбеля, чтобы завершить монтаж.



## 3.3 Подключение батареи

Для безопасной работы и соблюдения требований между аккумулятором и инвертором требуется отдельное устройство защиты от перегрузки по постоянному току или устройство отключения. В некоторых приложениях коммутационные устройства могут не потребоваться, но защита от перегрузки по току все же требуется. Для определения требуемого размера предохранителя или автоматического выключателя обратитесь к таблице ниже.

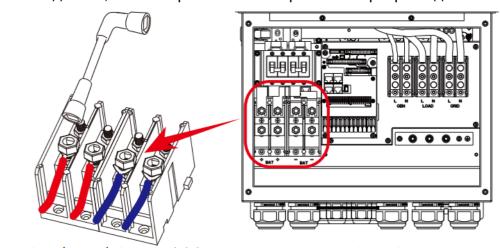
| Модель | Размер провода | Кабель (мм²) | Момент затяжки |  |
|--------|----------------|--------------|----------------|--|
|--------|----------------|--------------|----------------|--|



| 12/14/16 кВт | 1/0 AWG | 53 | 12.5нм |
|--------------|---------|----|--------|






Вся проводка должна быть выполнена профессиональным человеком.




Подключение аккумулятора подходящим кабелем важно для безопасной и эффективной работы системы. Чтобы снизить риск получения травмы, обратитесь к Таблице выше за рекомендуемым сечением кабеля.

Пожалуйста, выполните следующие шаги для подключения батареи:

- 1. Пожалуйста, выберите подходящий аккумуляторный кабель с правильным разъемом, который хорошо подходит к клеммам аккумулятора.
- 2. Используйте подходящую отвертку, чтобы открутить болты и вставить разъемы аккумулятора, затем затяните болт отверткой, убедитесь, что болты затянуты с крутящим моментом 13,6 нм по часовой стрелке.
  - 3. Убедитесь, что полярность на батарее и инверторе подключена правильно.



Для модели 12 кВт/14 кВт/ 16 кВТ размер винта разъема аккумулятора: М8

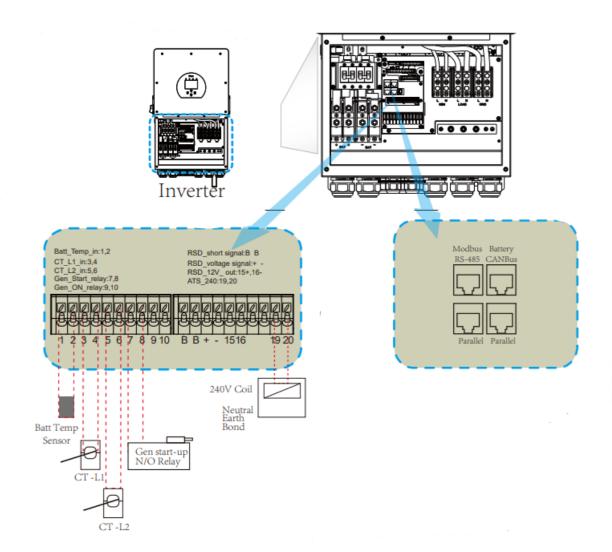


4. В случае прикосновения детей или проникновения насекомых в инвертор убедитесь, что разъем инвертора закреплен в водонепроницаемом положении, повернув его по часовой стрелке.



Установка должна выполняться с осторожностью.




Перед окончательным подключением постоянного тока или замыканием выключателя/разъединителя постоянного тока убедитесь, что положительный (+) должен быть подключен к положительному (+), а отрицательный (-) должен быть подключен к отрицательному (-).

Подключение обратной полярности к аккумулятору повредит инвертор.





## 3.3.1 Определение функционального порта





**ТЕМР (1,2):** датчик температуры для свинцово-кислотного аккумулятора.

**CT-L1 (3,4):** трансформатор тока (CT1) для режима «нулевого экспорта в CT».

**CT-L2 (5,6):** трансформатор тока (CT2) для режима «нулевого экспорта в CT». **G-старт (7,8):** сигнал сухого контакта на

запуск дизель-генератора

Когда «GEN сигнал» активен, открытый контакт (GS) включится (нет выходного напряжения).

**ATS:** выходной порт 230 В, когда инвертор включен.

Примечание. Для моделей 12,14,16 кВт, 230 В при 50 Гц) требуется только 1 ТТ, а вторичная сторона ТТ должна быть подключена к портам 5 и 6 (СТ-L2).

**RS 485**: порт RS 485 для связи с

аккумулятором.

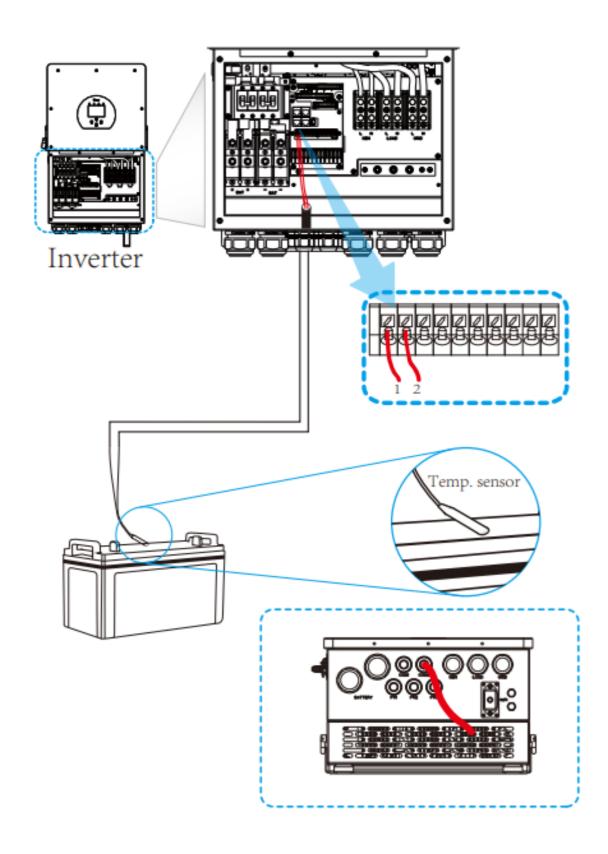
**CAN:** порт CAN для связи с

аккумулятором.

Parallel A: Параллельный

коммуникационный порт 1 (интерфейс

CAN).


Parallel B: Параллельный

коммуникационный порт 2 (интерфейс

CAN).



# 3.3.3 Подключение датчика температуры для свинцовокислотного аккумулятора





#### 3.4 Подключение к сети и подключение резервной нагрузки

Перед подключением к сети установите отдельный выключатель переменного тока между инвертором и сетью. Кроме того, рекомендуется установить разъединитель переменного тока между резервной нагрузкой и инвертором. Это обеспечит надежное отключение инвертора во время технического обслуживания и полную защиту от перегрузки по току.

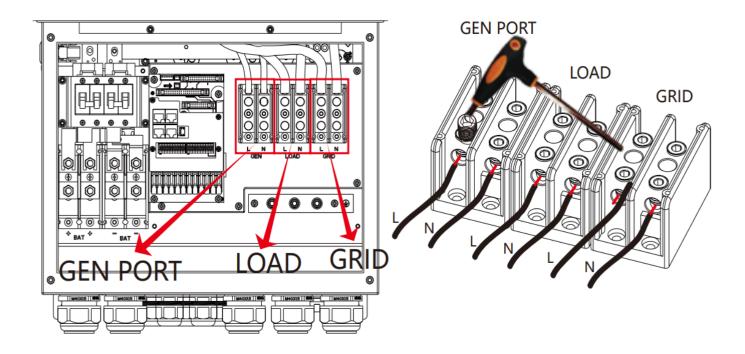
Имеется три клеммных колодки с маркировкой "Grid" "Load" и "GEN". Не перепутайте входные и выходные разъемы.



Вся проводка должна выполняться квалифицированным персоналом. Для безопасности и эффективной работы системы очень важно использовать соответствующий кабель для входного соединения переменного тока. Чтобы снизить риск получения травмы, используйте соответствующий рекомендуемый кабель, как показано ниже.

| Модель       | Размер провода | Кабель (мм²) | Момент затяжки |
|--------------|----------------|--------------|----------------|
| 12/14/16 кВт | 2AWG           | 35           | 18.6 Нм        |

Пожалуйста, выполните следующие шаги для реализации подключения входа/выхода переменного тока:


- 1. Перед выполнением подключения к сети, нагрузке и порту генератора обязательно сначала отключите блок питания переменного тока или разъединитель.
- 2. Снимите изоляционную втулку длиной 10 мм, открутите болты, вставьте провода в соответствии с полярностью, указанной на клеммной колодке, и затяните клеммные винты. Убедитесь, что подключение завершено.



Убедитесь, что источник питания переменного тока отключен, прежде чем пытаться подключить его к устройству.

- 3. Затем вставьте выходные провода переменного тока в соответствии с полярностью, указанной на клеммной колодке, и затяните клемму. Обязательно подключите соответствующие провода N и провода PE к соответствующим клеммам.
  - 4. Убедитесь, что провода надежно подключены.
- 5. Для перезапуска таких устройств, как кондиционер воздуха, требуется не менее 2-3 минут, поскольку требуется достаточно времени для балансировки газообразного хладагента внутри контура. Если перебои в электроснабжении возникают и быстро восстанавливаются, это может привести к повреждению подключенных устройств. Во избежание такого рода повреждений перед установкой проверьте производителя кондиционера, оснащен ли он функцией временной задержки. В противном случае этот инвертор вызовет ошибку перегрузки и отключит выход для защиты вашего устройства, но иногда это все же вызывает внутреннее повреждение кондиционера.







#### 3.5 Подключение фотоэлектрических модулей

Перед подключением к фотоэлектрическим модулям установите отдельный автоматический выключатель постоянного тока между инвертором и фотоэлектрическими модулями. Для безопасности и эффективной работы системы очень важно использовать соответствующий кабель для подключения фотоэлектрического модуля. Чтобы снизить риск получения травмы, используйте кабель надлежащего рекомендуемого размера, как показано ниже.

| Модель       | Размер провода | Кабель (мм²) |
|--------------|----------------|--------------|
| 12/14/16 кВт | 10AWG          | 6            |



Во избежание неисправности не подключайте фотоэлектрические модули с возможной утечкой тока к инвертору. Например, заземленные фотоэлектрические модули вызовут утечку тока на инвертор. При использовании фотоэлектрических модулей обязательно требуется ОТСУТСТВУЙТЕ заземления.



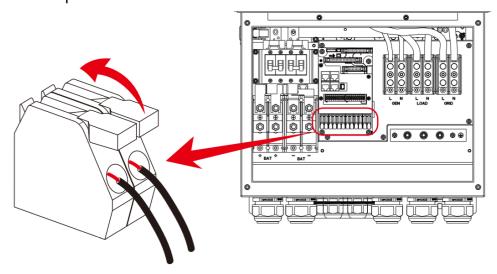
Требуется использовать распределительную коробку PV с защитой от перенапряжения. В противном случае это приведет к повреждению инвертора, когда на фотоэлектрических модулях произойдет разряд молнии.

#### 3.5.1 Выбор фотоэлектрического модуля

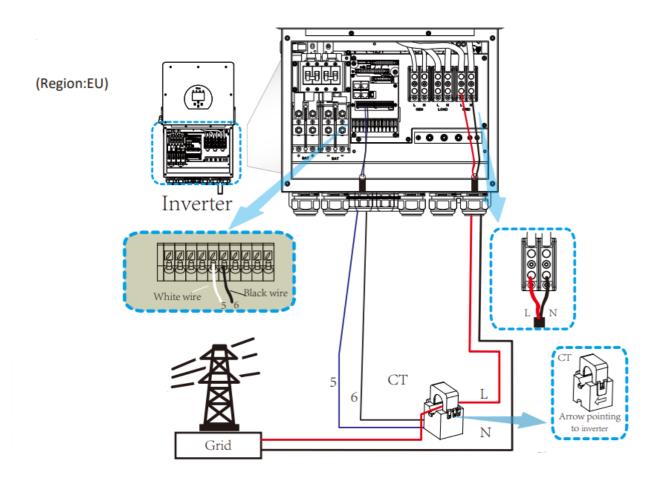
При выборе фотоэлектрических модулей обязательно учитывайте следующие параметры:

- 1. Напряжение холостого хода (Voc) фотоэлектрических модулей не превышает макс. Напряжение холостого хода инвертора.
- 2. Напряжение холостого хода (Voc) фотоэлектрических модулей должно быть выше мин. пускового напряжения.

| Модель инвертора                                           | 12кВт            | 14кВт | `16кВт |
|------------------------------------------------------------|------------------|-------|--------|
| Входное напряжение фотоэлектрических модулей               | 370B (125B~500B) |       | В)     |
| Диапазон напряжения МРРТ массива фотоэлектрических модулей | 150B-425B        |       |        |
| Количество МРРТ                                            | 3                |       |        |
| Количество стрингов на МРРТ                                |                  | 2+2   |        |


## 3.5.2 Соединение проводов модуля PV:

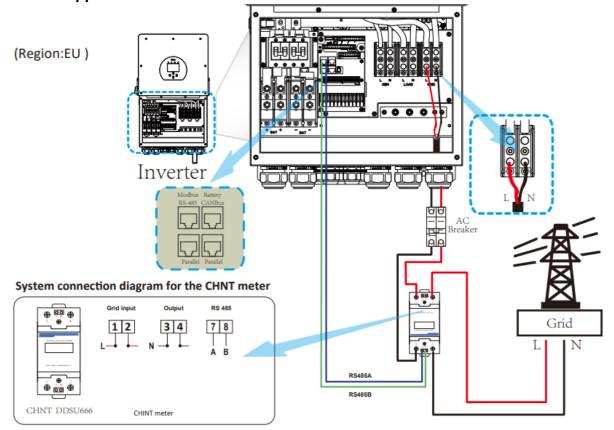
Пожалуйста, выполните следующие шаги для реализации подключения фотоэлектрического модуля:


- 1. Снимите изоляционную втулку 10 мм для положительного и отрицательного проводников.
- 2. Обожмите наконечниками концы положительного и отрицательного проводов с помощью соответствующего обжимного инструмента.
- 3. Проверьте правильную полярность подключения проводов от фотоэлектрических модулей и входных разъемов фотоэлектрических модулей. Затем подключите положительный полюс (+) соединительного провода к положительному полюсу (+) входного разъема фотоэлектрического модуля.



Подключите отрицательный полюс (-) соединительного провода к отрицательному полюсу (-) входного разъема фотоэлектрического модуля и убедитесь, что провода надежно закреплены.




## 3.6 Подключение TT





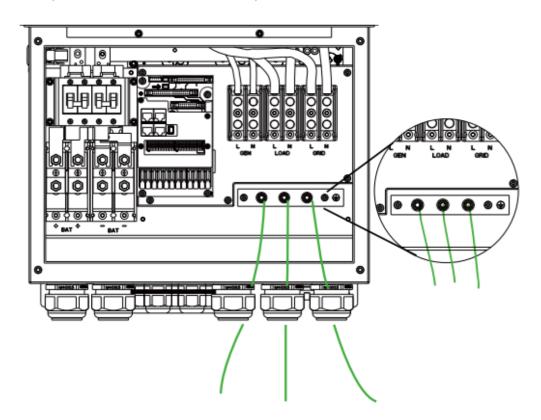


3.6.1 Подключение счетчика










#### Примечание:

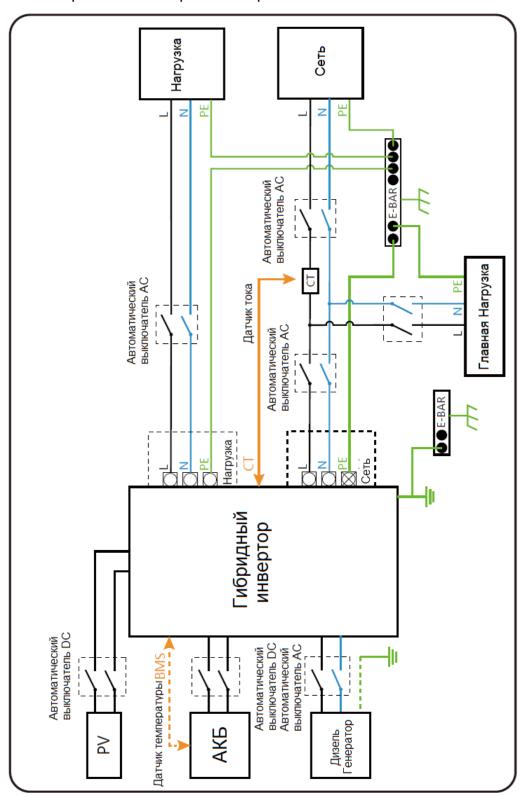
Когда инвертор находится в автономном режиме, линия N должна быть подключена к земле.

### 3.7 Заземление (обязательно)

Кабель заземления должен быть подключен к заземляющей пластине со стороны сети, что предотвращает поражение электрическим током в случае выхода из строя исходного защитного проводника.



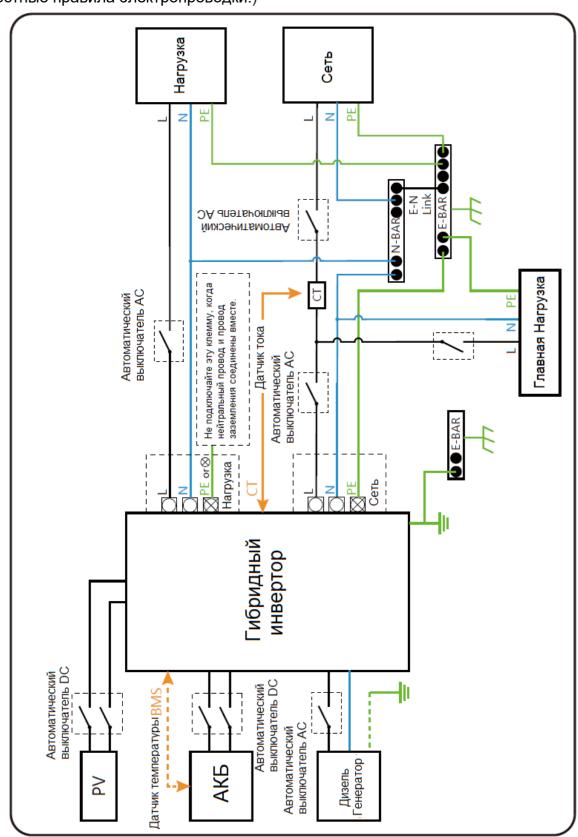
## 3.8 Wi-Fi соединение


Для настройки Wi-Fi Plug обратитесь к иллюстрациям Wi-Fi Plug.



### 3.9 Система проводки для инвертора

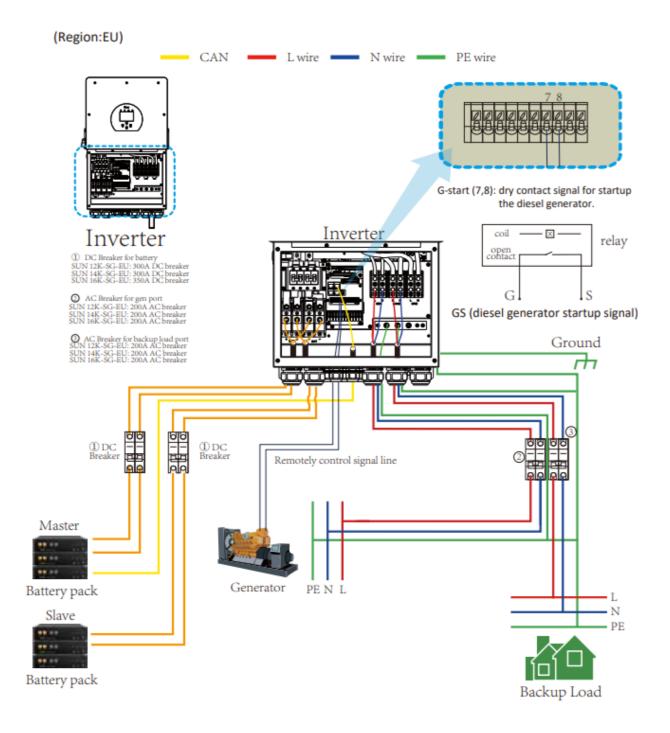
(Регион: ЕС) Эта схема является примером для сетевых систем без особых требований к подключению электропроводки.


Примечание: резервная линия защитного заземления и шина заземления должны быть правильно и эффективно заземлены. В противном случае резервная функция может работать ненормально при отказе сети.



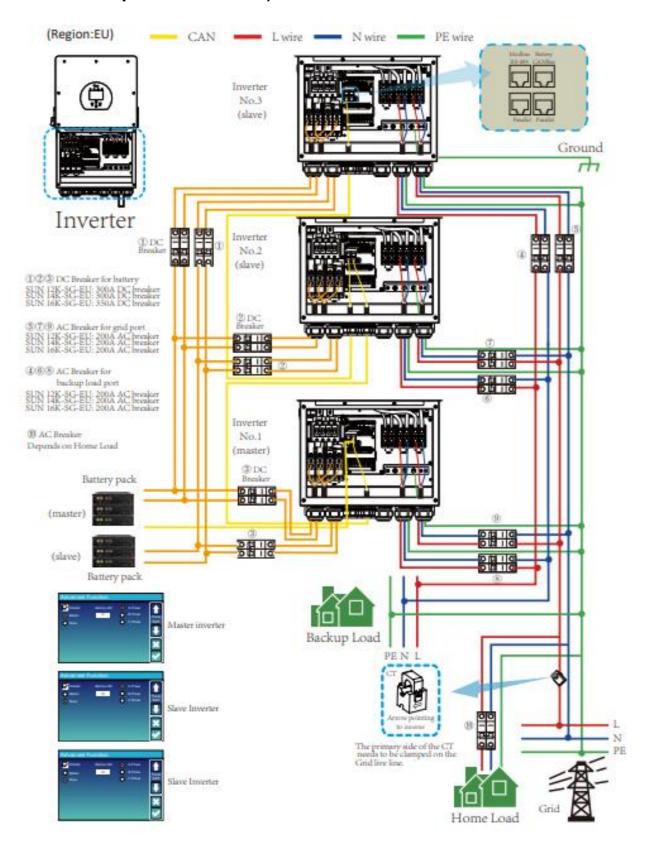


Эта диаграмма является примером применения, когда нейтраль соединяется с РЕ в распределительной коробке.

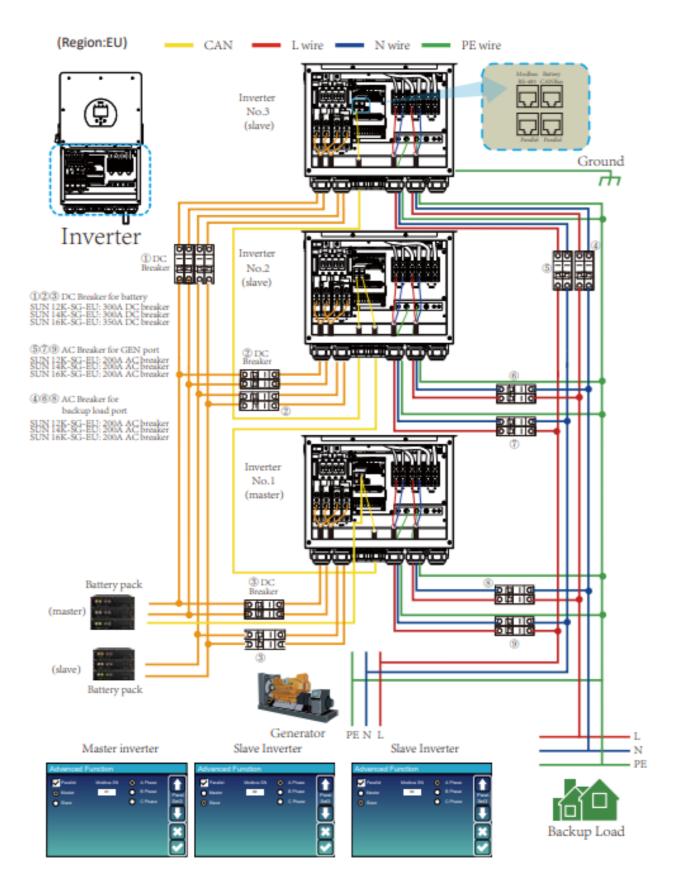

Например: Австралия, Новая Зеландия, Южная Африка и т. д. (Соблюдайте местные правила электропроводки!)





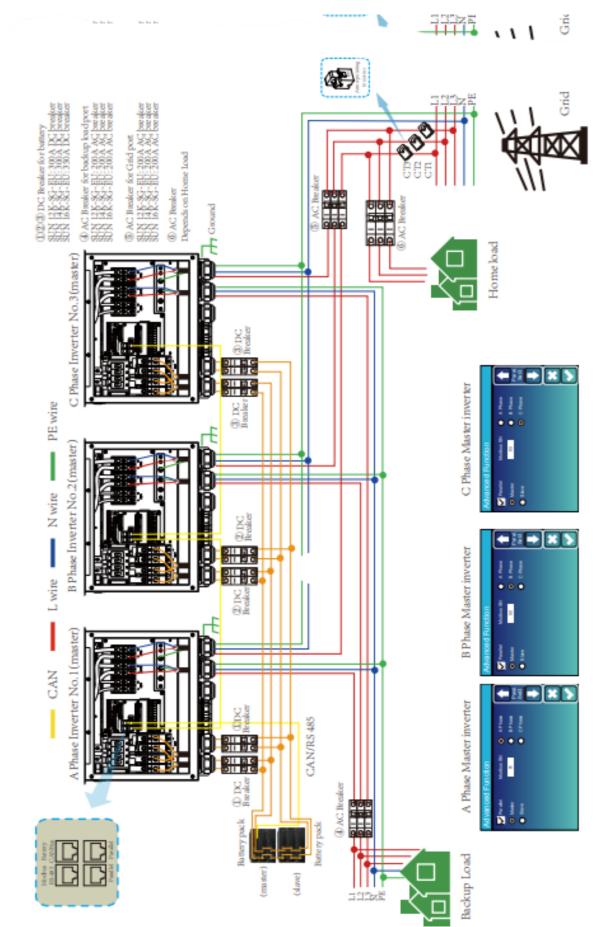



## 3.10 Типовая схема применения дизель-генератора






# 3.11 Схема параллельного подключения одной фазы (230 В переменного тока)










# 3.12 Параллельное подключение для 230/400 трехфазного тока









# 4. ЭКСПЛУАТАЦИЯ

#### 4.1 Включение/выключение питания

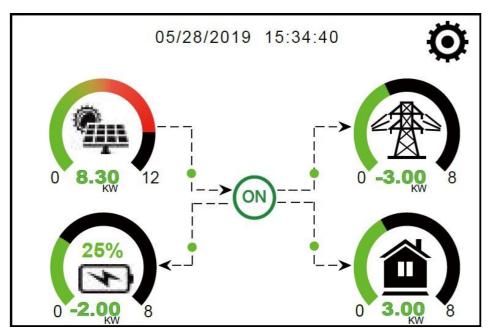
После правильной установки устройства и правильного подключения батарей просто нажмите кнопку включения/выключения (расположенную на левой стороне корпуса), чтобы включить устройство. Когда система не подключена к аккумулятору, но подключена либо к фотогальваническому элементу, либо к сети, а кнопка ВКЛ/ВЫКЛ выключена, ЖК-дисплей будет продолжать гореть (на дисплее будет отображаться ВЫКЛ). В этом состоянии, при включении кнопки ВКЛ/ВЫКЛ и отключенной батареи, система все еще может работать.

#### 4.2 Панель управления и дисплея

Панель управления и индикации, показанная на диаграмме ниже, находится на передней панели инвертора. Он включает в себя четыре индикатора, четыре функциональные клавиши и ЖК-дисплей, отображающий рабочее состояние и информацию о входной/выходной мощности.

| Индикация |                      | Описание                            |
|-----------|----------------------|-------------------------------------|
| DC        | Зеленый светодиодный | Нормальное подключение<br>PV        |
| AC        | Зеленый светодиодный | Нормальное подключение<br>к сети    |
| Normal    | Зеленый светодиодный | Инвертор работает<br>нормально      |
| Alarm     | Красный светодиод    | Неисправность или<br>предупреждение |

| Функциональная<br>клавиша | Описание                           |
|---------------------------|------------------------------------|
| Esc                       | Для выхода из режима настройки     |
| UP                        | Чтобы перейти к предыдущему выбору |
| Down                      | Чтобы перейти к следующему выбору  |
| Enter                     | Чтобы подтвердить выбор            |


## 5. Иконки ЖК-дисплея

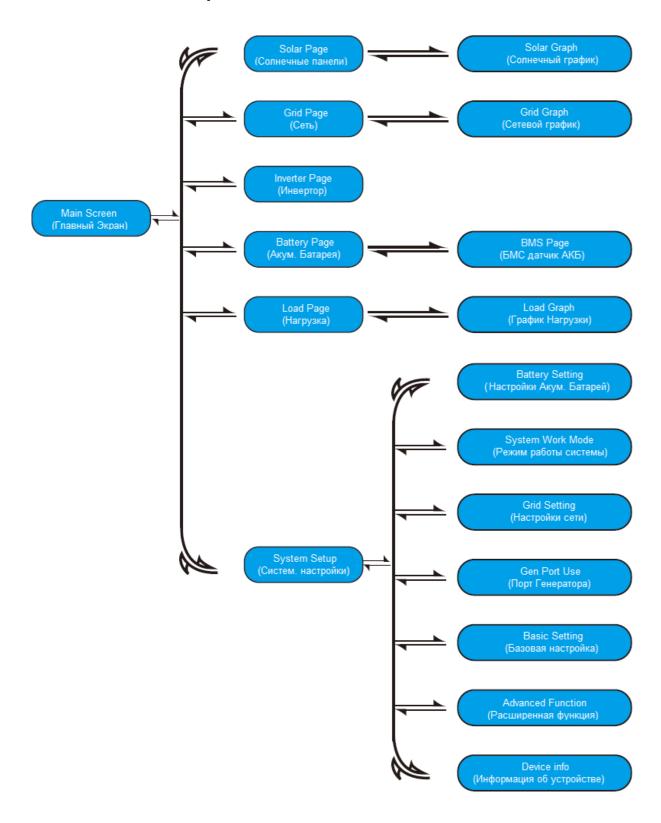
## 5.1 Главный экран

ЖК-дисплей представляет собой сенсорный экран, на нижнем экране отображается общая информация об инверторе.

- 1. Значок в центре главного экрана указывает на то, что система работает в обычном режиме. Если он превращается в «comm./F01~F64», это означает, что инвертор имеет ошибки связи или другие ошибки, сообщение об ошибке будет отображаться под этим значком (ошибки F01-F64, подробную информацию об ошибках можно просмотреть в меню системных аварийных сигналов).
  - 2. Вверху экрана время.






- 3. Значок настройки системы. Нажмите эту кнопку, чтобы войти в экран настройки системы, который включает базовую настройку, настройку батареи, настройку сети, режим работы системы, использование порта генератора, расширенные функции и информацию о литиевой батарее.
- 4. Главный экран, показывает информацию о солнечной энергии, сети, нагрузки и батареи. Он также показывает направление потока энергии стрелкой. Когда мощность приблизится к высокому уровню, цвет на панелях изменится с зеленого на красный, поэтому информация о системе ярко отображается на главном экране.

Мощность PV и мощность нагрузки всегда остаются положительными.

- · Отрицательная мощность сети означает продажу в сеть, положительная означает получение из сети.
  - Отрицательная мощность батареи означает заряд, положительная разряд. Мощность PV и мощность нагрузки всегда остаются положительными.



## 5.1.1 Блок-схема работы ЖК-дисплея





#### 5.2 Кривая солнечной энергии









Это страница сведений о солнечной панели.

- 1. Выработка солнечных панелей.
- 2. Напряжение, ток, мощность для каждого MPPT.
- 3. Энергия солнечной панели за день и общее количество.

Нажмите кнопку «Энергия», чтобы перейти на страницу кривой мощности.

Это страница сведений об инверторе.

- 1. Выработка Инвертора.
- 2. Напряжение, ток, мощность для каждой фазы.
- \*DC-Т: средняя температура DC-DC,
   \*Примечание: информация об этой детали недоступна для некоторых микропрограмм ЖК-дисплеев.
   ACT: средняя температура радиатора.

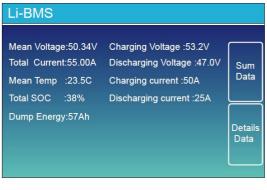
Это страница сведений о резервной нагрузке.

- 1. Резервное питание.
- 2. Напряжение, мощность для каждой фазы.
- 3. Резервное дневное и полное потребление.

Нажмите кнопку «Энергия», чтобы перейти на страницу кривой мощности.

Это страница сведений о сети.

- 1. Статус, Мощность, Частота.
- 2. L1/L2: напряжение для каждой фазы CT1/CT2: мощность, обнаруженная внешними датчиками тока. LD2/LD2: мощность определяется с


помощью внутренних датчиков на входном/выходном выключателе сети переменного тока.

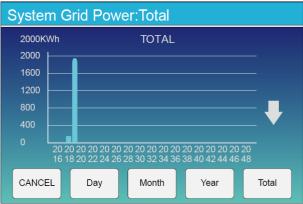
3. BUY: Энергия от сети к инвертору, SELL: Энергия от инвертора к сети.

Нажмите кнопку «Энергия», чтобы перейти на страницу кривой мощности.





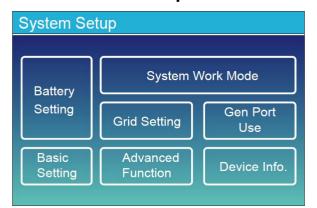



| L        | Li-BMS         |                  |                |                |                 |                |                |       |         |
|----------|----------------|------------------|----------------|----------------|-----------------|----------------|----------------|-------|---------|
|          | Volt           | Curr             | Temp           | soc            | Energy          | Cha            |                | Fault |         |
| 1        |                | 19.70A           | 30.6C          | 52.0%          | 26.0Ah          | Volt<br>0.0V   | Curr<br>0.0A   | 0000  |         |
| 2        |                | 19.10A<br>16.90A | 31.0C<br>30.2C | 51.0%<br>12.0% | 25.5Ah<br>6.0Ah | 53.2V<br>53.2V | 25.0A<br>25.0A | 0000  | Sum     |
| 4 5      | 0.00V<br>0.00V | 0.00A<br>0.00A   | 0.0C<br>0.0C   | 0.0%           | 0.0Ah<br>0.0Ah  | 0.0V<br>0.0V   | 0.0A<br>0.0A   | 0000  | Data    |
| 6        | 0.00V<br>0.00V | 0.00A<br>0.00A   | 0.0C<br>0.0C   | 0.0%           | 0.0Ah<br>0.0Ah  | 0.0V<br>0.0V   | 0.0A<br>0.0A   | 0000  | igsqcup |
| 8 9      | 0.00V<br>0.00V | 0.00A            | 0.0C           | 0.0%           | 0.0Ah           | 0.0V           | 0.0A           | 0 0 0 |         |
| 10       | 0.00V          | 0.00A<br>0.00A   | 0.0C<br>0.0C   | 0.0%<br>0.0%   | 0.0Ah<br>0.0Ah  | V0.0<br>V0.0   | 0.0A<br>0.0A   | 0 0 0 | Details |
| 11<br>12 | 0.00V<br>0.00V | 0.00A<br>0.00A   | 0.0C           | 0.0%<br>0.0%   | 0.0Ah<br>0.0Ah  | V0.0<br>V0.0   | 0.0A<br>0.0A   | 0000  | Data    |
| 13<br>14 |                | 0.00A<br>0.00A   | 0.0C<br>0.0C   | 0.0%           | 0.0Ah<br>0.0Ah  | 0.0V<br>0.0V   | 0.0A<br>0.0A   | 0000  |         |
| 15       | 0.00V          | 0.00A            | 0.0C           | 0.0%           | 0.0Ah           | 0.0V           | 0.0A           | 0 0 0 |         |

## 5.3 График - Солнечная энергия, нагрузка и сеть










Кривую солнечной энергии за день, месяц, год и общую можно приблизительно проверить на ЖК-дисплее, для большей точности выработки электроэнергии, пожалуйста, проверьте систему мониторинга. Щелкните стрелку вверх и вниз, чтобы проверить кривую мощности за другой период.



## 5.4 Меню настройки системы



Это страница настройки системы.

## 5.5 Меню основных настроек



Factory Reset: сброс всех параметров инвертора.

Lock out all changes: включите это меню для настройки параметров, которые требуют блокировки и не могут быть изменены.

Перед успешным изменением настроек и блокировки систем, чтобы сохранить все изменения, вам необходимо ввести пароль, чтобы активировать настройку. Пароль для заводских настроек 9999, а для блокировки 7777.



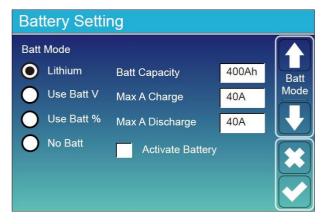
Factory Reset PassWork: 9999

Lock out all changes PassWork: 7777

**System selfchek**: после выбора этого пункта необходимо ввести пароль. Пароль по умолчанию 1234.



## 5.6 Меню настройки батареи


Battery capacity: задать емкость аккумуляторный батарии.

Use Batt V: применить напряжение батареи для всех настроек (V).

Use Batt %: применить Battery SOC для всех настроек (%).

#### Max. A charge / discharge:

Максимальный ток заряда/разряда аккумулятора (0–220 А для модели 12 кВт, 0–250 А для модели 14 кВт, 0–290 А для модели 16 кВт). Для АGM и Flooded мы рекомендуем размер батареи в Ач х 20% = ток заряда/разряда. Для литиевых мы рекомендуем емкость Ач батареи х 50% = ток заряда/разряда. Для геля следуйте инструкциям производителя.



**No Batt:** отметьте этот пункт, если батарея не подключена к системе. **Active battery:** Эта функция поможет восстановить полностью разряженную батарею путем медленной зарядки от солнечной батареи или сети.



Страница настройки заряда от сети.

Start =30%: не используется. A = 40A: ток, которым сеть заряжает аккумулятор.

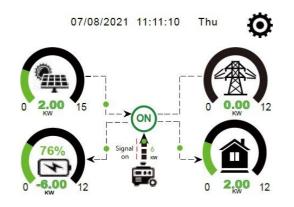
Grid Charge: сеть заряжает батарею.

Grid Signal: отключено.

Это страница настройки батареи.

**Start =30%:** процент SOC при 30% системы автоматически запускает подключенный генератор для зарядки аккумуляторной батареи.

A = 40A: ток заряд от генератора.

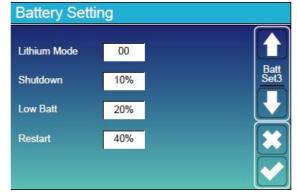

**Gen Charge:** использует вход генератора системы для зарядки аккумуляторной батареи от подключенного генератора.

**Gen Signal:** нормально разомкнутое реле, которое замыкается, когда состояние сигнала запуска генератора активно.

**Gen Max Run Time:** указывает максимальное время, в течение которого генератор может работать за один день. Когда время истечет, генератор будет выключен. 24 часа означает, что он не выключится.

**Gen Down Time:** время задержки выключения генератора после того, как он достиг времени работы.



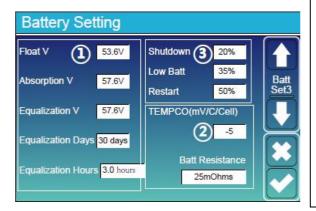



На этой странице показано, что фотоэлектрический и дизельный генератор питают нагрузку и аккумулятор.





На этой странице сообщается выходное напряжение генератора, частота, мощность. И сколько энергии используется от генератора.




**Lithium Mode:** это протокол BMS. См. документ

**Shutdown 10%:** Указывает, что инвертор выключится, если SOC ниже этого значения.

**Low Batt 20%:** Указывает, что инвертор подаст сигнал тревоги, если SOC ниже этого значения.

**Restart 40%:** напряжение батареи при 40% выходном переменном токе возобновится.

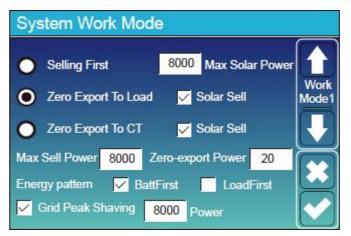


#### Есть 3 этапа зарядки аккумулятора.

Это для профессиональных установщиков, можете оставить, если не знаете.

**Shutdown 20%:** Инвертор выключится, если SOC ниже этого значения.

**Low Batt 35%:** Инвертор подаст сигнал, если SOC ниже этого значения.


**Restart 50%:** SOC батареи при 50% выходе переменного тока возобновится.

#### Рекомендуемые настройки батареи.

| Тип батареи  | Стадия<br>Absorption | Стадия Float    | Значение крутящего момента<br>(каждые 30 дней 3 часа) |
|--------------|----------------------|-----------------|-------------------------------------------------------|
| AGM (or PCC) | 14.2B(57.6B).        | 13.4B(53.6B)    | 14.2B(57.6B)                                          |
| Gel          | 14.1B(56.4B)         | 13.5B(54.0B)    |                                                       |
| Wet          | 14.7B(59.0B)         | 13.8B(55.0B)    | 14.7B(59.0B)                                          |
| Lithium      | След                 | дите за парамет | рами напряжения BMS                                   |



## 5.7 Меню настройки режима работы системы

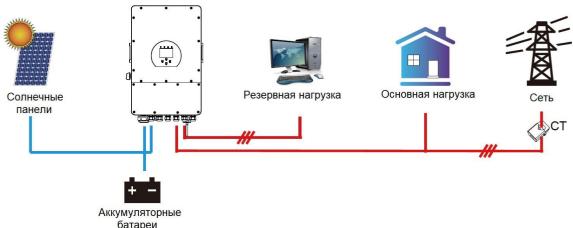


### Режим работы

Selling First: этот режим позволяет гибридному инвертору продавать избыточную мощность, вырабатываемую солнечными панелями, обратно в сеть. Если время использования активно, энергия батареи также может быть продана в сеть.

Энергия PV будет использоваться для питания нагрузки и зарядки аккумулятора, а затем избыточная энергия будет

поступать в сеть. Приоритет источника питания для нагрузки, следующий:


- 1. Солнечные панели
- 2. Сеть
- 3. Аккумуляторные батареи (пока не будет достигнут запрограммированный % разряда).

**Zero Export To Load:** Гибридный инвертор обеспечивает питание только подключенной резервной нагрузки. Гибридный инвертор не будет ни обеспечивать электроэнергией домашнюю нагрузку, ни продавать электроэнергию в сеть. Встроенный трансформатор тока обнаружит, что мощность возвращается в сеть, и уменьшит мощность инвертора только для питания местной нагрузки и зарядки аккумулятора.



**Zero Export To CT:** Гибридный инвертор будет обеспечивать питанием не только подключенную резервную нагрузку, но и подавать питание на подключенную домашнюю нагрузку. Если мощности фотоэлектрических панелей и батареи недостаточно, в качестве дополнения будет использоваться энергия сети. Гибридный инвертор не будет продавать электроэнергию в сеть. В этом режиме необходим КТ. Способ установки трансформатора тока см. в главе 3.6 Подключение трансформатора тока. Внешний ТТ обнаружит, что мощность возвращается в сеть, и уменьшит мощность инвертора только для питания местной нагрузки, зарядки аккумулятора и домашней нагрузки.





**Solar Sell:** «Солнечная продажа» предназначена для нулевого экспорта в нагрузку или нулевого экспорта в СТ: когда этот пункт активен, избыточная энергия может быть продана обратно в сеть. Когда он активен, приоритет использования фотоэлектрического источника питания, следующий: потребление нагрузки и заряд батареи, и подача в сеть.

**Max. sell power:** разрешена максимальная выходная мощность, поступающая в сеть.

**Zero-export Power:** для режима нулевого экспорта он указывает выходную мощность сети. Рекомендуется установить его на 20-100 Вт, чтобы гибридный инвертор не подавал питание в сеть.

Energy Pattern: приоритет источника фотоэлектрической энергии.

**Batt First:** Фотоэлектрическая энергия сначала используется для зарядки аккумулятора, а затем используется для питания нагрузки. Если фотоэлектрической мощности недостаточно, сеть будет производить пополнение для батареи и нагрузки одновременно.

**Load First:** Фотоэлектрическая энергия сначала используется для питания нагрузки, а затем используется для зарядки аккумулятора. Если фотоэлектрической мощности недостаточно, сеть обеспечит питание для нагрузки.

Max Solar Power: допускается максимальная входная мощность постоянного тока.

**Grid Peak-shaving:** когда активен, выходная мощность сети будет ограничена установленным значением. Если мощность нагрузки превышает допустимое значение, в качестве дополнения потребуются фотоэлектрическая энергия и батарея. Если по-прежнему не удается удовлетворить требования нагрузки, мощность сети будет увеличиваться для удовлетворения потребностей нагрузки.

| System Work Mode |     |                               |       |      |       |               |
|------------------|-----|-------------------------------|-------|------|-------|---------------|
| Grid<br>Charge   | Gen | ✓ Time Of Use Time Power Batt |       |      |       |               |
|                  |     | 01:00                         | 5:00  | 8000 | 49.0V | Work<br>Mode2 |
|                  |     | 05:00                         | 9:00  | 8000 | 50.2V |               |
| $\checkmark$     |     | 09:00                         | 13:00 | 8000 | 50.9V |               |
| $\overline{\ }$  |     | 13:00                         | 17:00 | 8000 | 51.4V |               |
| $\overline{\ }$  |     | 17:00                         | 21:00 | 8000 | 47.1V | K             |
| $\checkmark$     |     | 21:00                         | 01:00 | 8000 | 49.0V |               |

Time of use: используется для программирования, когда использовать сеть или генератор для зарядки аккумулятора, а когда разряжать аккумулятор для питания нагрузки. Отметьте только «Время использования», после чего вступят в силу следующие элементы (сеть, заряд, время, мощность и т. д.).

**Примечание:** при первой продаже и времени использования, мощность батареи может быть продана в сеть.



**Grid charge:** использовать сеть для зарядки аккумулятора в течение определенного периода времени.

**Gen charge:** использовать дизельный генератор для зарядки аккумулятора в течение определенного периода времени.

**Time:** реальное времени, диапазон 01:00-24:00.

Power: Максимум. допустимая мощность разряда батареи.

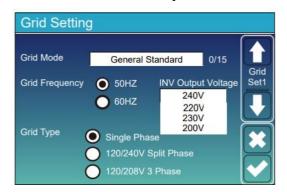
**Batt(V or SOC %):** батарея SOC % или напряжение, когда действие должно произойти.

#### Например:

В период с 01:00 до 05:00, когда SOC батареи ниже 80%, он будет использовать сеть для зарядки батареи, пока SOC батареи не достигнет 80%.

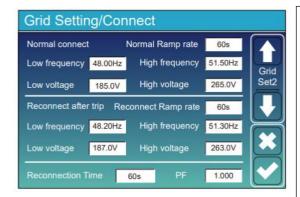
В период с 05:00 до 08:00 и с 08:00 до 10:00, когда SOC батареи выше 40%, гибридный инвертор будет разряжать батарею до тех пор, пока SOC не достигнет 40%.

В период с 10:00 до 15:00, когда SOC батареи выше 80%, гибридный инвертор будет разряжать батарею до тех пор, пока SOC не достигнет 80%.


В период с 15:00 до 18:00, когда SOC батареи выше 40%, гибридный инвертор будет разряжать батарею до тех пор, пока SOC не достигнет 40%.

В период с 18:00 до 01:00, когда SOC батареи выше 35%, гибридный инвертор будет разряжать батарею до тех пор, пока SOC не достигнет 35%.

| System Work Mode              |       |                |                 |      |       |
|-------------------------------|-------|----------------|-----------------|------|-------|
| Grid<br>Charge <sup>Gen</sup> | I.    | ∕ Time<br>Time | Of Use<br>Power | Batt | Work  |
|                               | 01:00 | 5:00           | 8000            | 80%  | Mode2 |
|                               | 05:00 | 8:00           | 8000            | 40%  |       |
|                               | 08:00 | 10:00          | 8000            | 40%  |       |
|                               | 10:00 | 15:00          | 8000            | 80%  |       |
|                               | 15:00 | 18:00          | 8000            | 40%  |       |
|                               | 18:00 | 01:00          | 8000            | 35%  |       |




## 5.8 Меню настройки сети



**Grid Mode**:Пожалуйста, выберите правильный режим сети в вашем регионе. Если вы не уверены выберите «Общий стандарт».

Пожалуйста, выберите правильный тип сети в вашем регионе, в противном случае устройство не будет работать или будет повреждено.



**Normal connect:** Допустимый диапазон напряжения/частоты сети при первом подключении инвертора к сети.

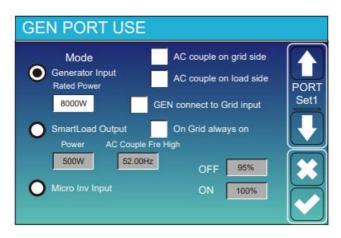
Normal Ramp rate: Это стартовый скачок мощности

лощности

Reconnect after trip: Допустимый диапазон

напряжения/частоты

Reconnect Ramp rate: Это скачок мощности


повторного подключения

**PF**: Коэффициент мощности, который используется для регулировки реактивной мощности инвертора.





## 5.9 Меню настройки порта генератора



Generator input rated power: разрешен Макс. питание от дизель-генератора.

**GEN connect to grid input**: подключите дизельный генератор к входному порту сети.

**Smart Load Output:** в этом режиме входное соединение Gen используется в качестве выхода, который получает питание только тогда, когда SOC батареи и мощность PV превышают программируемый пользователем порог.

**ON:** 100%, OFF=95%: когда мощность фотоэлектрических модулей превышает 500 Вт, а SOC блока батарей достигает 100%, порт Smart Load Port автоматически включается и питает подключенную нагрузку. Когда аккумуляторный блок SOC < 95%, порт Smart Load Port автоматически отключается.

Smart Load OFF Batt: уровень заряда батареи, при котором интеллектуальная нагрузка отключается.

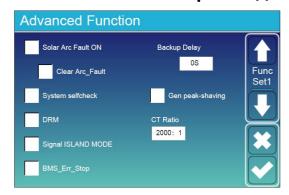
**Smart Load ON Batt:** уровень заряда батареи, при котором включается интеллектуальная нагрузка. одновременно, после чего включится интеллектуальная нагрузка.

On Grid always on: при нажатии интеллектуальная нагрузка будет включаться при наличии сети.

**Micro Inv Input:** чтобы использовать входной порт генератора в качестве микроинвертора на входе инвертора сети (связанный по переменному току), эта функция также будет работать с инверторами, привязанными к сети.

\*Micro Inv Input OFF: когда SOC батареи превышает установленное значение, Microinveter или сетевой инвертор выключается.

\*Micro Inv Input ON: когда SOC батареи ниже установленного значения, начинает работать Microinveter или сетевой инвертор.


**AC Couple Fre High:** при выборе «Micro Inv input» по мере того, как батарея SOC постепенно достигает установленного значения (OFF), во время процесса выходная мощность микроинвертора будет уменьшаться линейно. Когда SOC батареи становится равным заданному значению (OFF), системная частота становится заданным значением, и микроинвертор перестает работать.

**MI export to grid cutsoff:** прекращение экспорта электроэнергии, произведенной микроинвертором, в сеть.

**Примечание.** Включение и выключение входа Micro Inv доступно только для некоторых версий микропрограммного обеспечения.



## 5.10 Меню настройки дополнительных функций



## 

Solar Arc Fault ON: Это только для США.

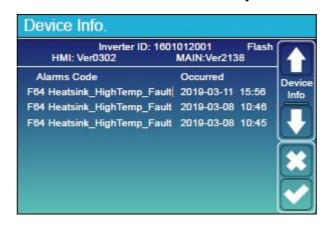
System selfcheck: Отключено. это только для

завода.

**Gen Peak-shaving:** Активация Когда мощность генератора превышает его номинальное значение, инвертор обеспечивает резервную часть, чтобы гарантировать, что генератор не будет перегружен.

**DRM:** Для стандарта AS4777.

Backup Delay: (0-300) S регулируемый.


**BMS\_Err\_Stop:** активен когда батарея BMS не может связаться с инвертором, инвертор перестанет работать и сообщит об ошибке.

Signal island mode: когда инвертор подключается к сети, порт ATS будет выдавать 230 В переменного тока, и он используется для отключения связи «земля-нейтраль» (линия порта нагрузки N) через подключение внешнего реле. Когда инвертор отключается от сети, напряжение порта ATS будет равно 0, а соединение «земля-нейтраль» будет продолжаться. Более подробную информацию см. на изображении.

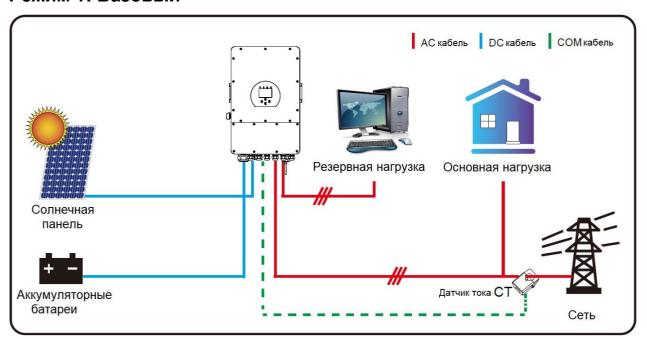


Ex\_Meter For CT: в трехфазной системе с трехфазным счетчиком электроэнергии CHNT (DTSU666) щелкните соответствующую фазу, к которой подключен гибридный инвертор. например когда выход гибридного инвертора подключается к фазе A, нажмите «Фаза A».

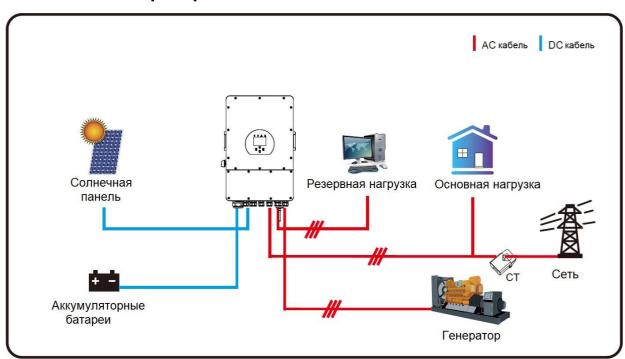
## 5.11 Меню настройки информации об устройстве



На этой странице показаны идентификатор инвертора, версия инвертора и коды аварийных сигналов.

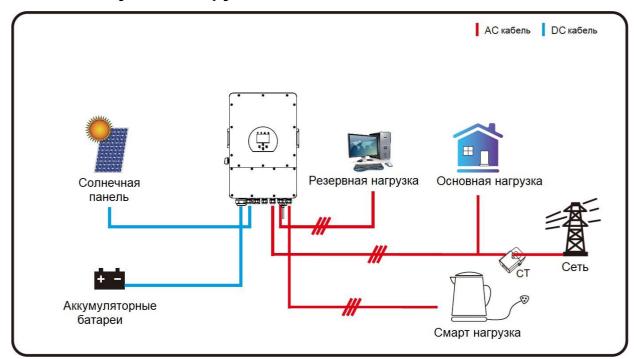

НМІ: ЖК-версия.

MAIN: Версия FW платы управления.

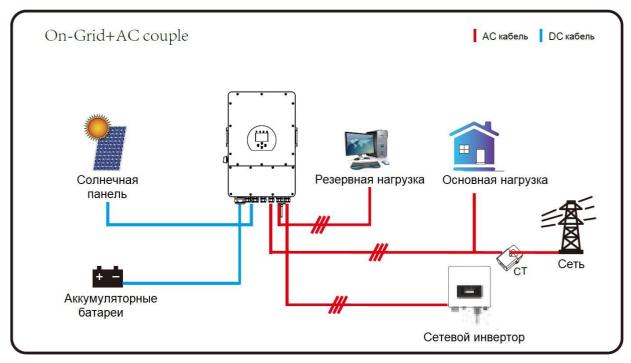



# 6. Режимы

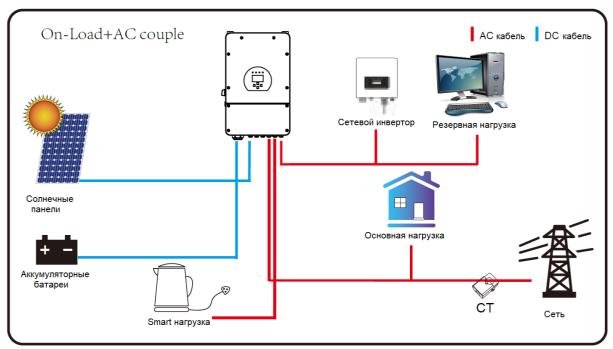
## Режим 1: Базовый

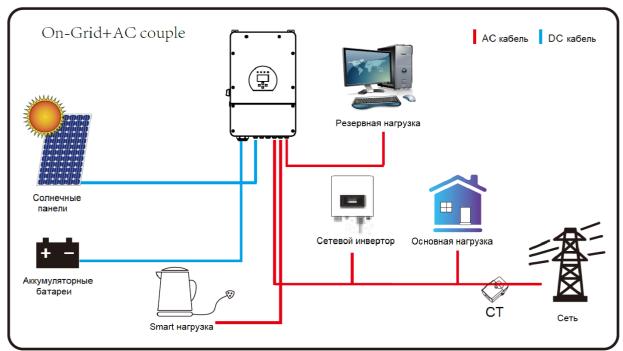



Режим 2: С генератором







Режим 3: С умной нагрузкой




Режим 4: Два инвертора АС











Первый приоритетной мощностью системы всегда является фотоэлектрическая мощность, а 2-й и 3-й приоритетной мощностью будет аккумуляторная батарея или сеть в соответствии с настройками. Последним резервным источником питания будет Генератор, если он доступен.



## 7. Информация об ошибках и обработка

Инвертор накопителя энергии разработан в соответствии со стандартом работы от сети и отвечает требованиям безопасности и требованиям электромагнитной совместимости. Перед отправкой с завода инвертор проходит несколько строгих испытаний, чтобы гарантировать его надежную работу.



Если на инверторе появляется какое-либо из сообщений об ошибках, перечисленных в таблице 7-1, и неисправность не устранена после перезапуска, обратитесь к местному дилеру или в сервисный центр. Вам необходимо подготовить следующую информацию.

- 1. Серийный номер инвертора;
- 2. Дистрибьютор или сервисный центр инвертора;
- 3. Дата выработки электроэнергии в сеть:
- 4. Описание проблемы (включая код неисправности и состояние индикатора, отображаемое на ЖК-дисплее) должно быть максимально подробным.
- 5. Ваша контактная информация. Чтобы дать вам более четкое представление об информации о неисправностях инвертора, мы перечислим все возможные коды неисправностей и их описания, когда инвертор не работает должным образом.

| Код<br>Ошибки | Описание                                                | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F08           | GFDI _Relay_Failure                                     | 1. Когда инвертор работает в разделенной фазе (120/240 В переменного тока) или в трехфазной системе (120/208 В переменного тока), линия резервного порта нагрузки N должна быть заземлена;                                                                                                                                                                                                                                                                                              |
| F13           | Изменение режима работы                                 | <ol> <li>Когда тип сети и частота изменились, он сообщит F13;</li> <li>Когда режим батареи был изменен на режим «Без батареи», он сообщит F13;</li> <li>Для некоторых старых версий FW будет сообщать F13 при изменении режима работы системы;</li> <li>Как правило, он автоматически исчезает при отображении F13;</li> <li>Если все так же, выключите переключатель постоянного тока и подождите одну минуту, а затем включите переключатель постоянного/переменного тока;</li> </ol> |
| F18           | Ошибка перегрузки по току переменного тока оборудования | Перегрузка по току на стороне переменного тока  1. Пожалуйста, проверьте, находятся ли резервная мощность нагрузки и                                                                                                                                                                                                                                                                                                                                                                    |



|      |                              | мощность общей нагрузки в пределах                        |
|------|------------------------------|-----------------------------------------------------------|
|      |                              | допустимого диапазона;                                    |
|      |                              | 2. Перезапустите и проверьте, все ли в порядке;           |
|      |                              | Ошибка перегрузки по току на стороне                      |
|      |                              | постоянного тока                                          |
|      |                              | 1. Проверьте подключение                                  |
|      |                              | фотоэлектрического модуля и                               |
|      | Попостоличество постоянности | батареи;                                                  |
|      | Перегрузка по постоянному    | 2. В автономном режиме инвертор                           |
| F20  | току аппаратного обеспечения | запускается с большой нагрузкой, он может сообщить F20.   |
|      |                              | Пожалуйста, уменьшите                                     |
|      |                              | подключенную мощность нагрузки;                           |
|      |                              | 3. Выключите переключатель                                |
|      |                              | постоянного тока и переключатель                          |
|      |                              | переменного тока, подождите одну                          |
|      |                              | минуту, затем снова включите.                             |
|      |                              | Удаленное отключение                                      |
| F22  | Tz_EmergStop_Fault           | это говорит о том, что инвертор                           |
|      |                              | управляется дистанционно.                                 |
|      |                              | Ошибка тока утечки                                        |
|      | Tz_GFCI_OC_ current is       | 1. Проверьте заземление кабеля со                         |
| F23  | transient over current       | стороны фотогальванических                                |
|      |                              | модулей.                                                  |
|      |                              | 2. Перезагрузите систему 2-3 раза.                        |
|      |                              | Сопротивление изоляции PV слишком низкое                  |
|      | Нарушение изоляции           | 1. Убедитесь, что соединение                              |
| F24  | постоянного тока             | фотоэлектрических панелей и                               |
|      |                              | инвертора надежно и правильно;                            |
|      |                              | 2. Проверьте, подключен ли кабель                         |
|      |                              | РЕ инвертора к земле;                                     |
|      |                              | 1. Пожалуйста, подождите некоторое                        |
|      |                              | время и проверьте, нормально ли                           |
|      | Шина постоянного тока        | это;                                                      |
| F26  | несбалансированная           | 2. Когда мощность нагрузки 3-х фаз                        |
|      |                              | сильно отличается, он сообщит                             |
|      |                              | F26.                                                      |
|      |                              | 3. Когда есть ток утечки постоянного тока, он сообщит F26 |
|      |                              | 4. Перезагрузите систему 2-3 раза.                        |
|      |                              | 1. В параллельном режиме проверьте                        |
|      |                              | подключение параллельного                                 |
|      |                              | кабеля связи и настройку адреса                           |
|      | Неисправность параллельной   | связи гибридного инвертора;                               |
| F29  | шины CAN                     | 2. Во время запуска параллельной                          |
|      |                              | системы инверторы выдают                                  |
|      |                              | сообщение F29. Но когда все                               |
|      |                              | инверторы находятся в состоянии                           |
|      |                              | ВКЛ, оно автоматически исчезает;                          |
| F34  | Ошибка перегрузки по току    | 1. Проверьте подключенную                                 |
| 1 34 | переменного тока             | резервную нагрузку, убедитесь, что                        |



|  | она |
|--|-----|
|  |     |



|     |                                                    | T                                                                                                                                                                                                                          |
|-----|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                    | находится в допустимом диапазоне мощности.                                                                                                                                                                                 |
| F35 | Нет сети переменного тока                          | Нет сети  1. Пожалуйста, подтвердите сеть мультметром;  2. Проверьте правильность подключения к сети;  3. Проверьте, включен ли переключатель между инвертором и сетью;                                                    |
| F41 | Параллельная остановка<br>системы                  | Ошибка сетевого напряжения                                                                                                                                                                                                 |
| F42 | Низкое напряжение сети<br>переменного тока         | 1. Убедитесь, что напряжение переменного тока находится в диапазоне стандартного напряжения, указанного в спецификации; 2. Проверьте, надежно ли и правильно подключены сетевые кабели переменного тока;                   |
| F47 | Превышение частоты<br>переменного тока             | Частота сети вне допустимого диапазона 1. Проверьте, находится ли частота в диапазоне спецификации или нет; 2. Проверьте, надежно ли и правильно подключены кабели переменного тока;                                       |
| F48 | Низкая частота переменного<br>тока                 | Частота сети вне допустимого диапазона 1. Проверьте, находится ли частота в диапазоне спецификации или нет; 2. Проверьте, надежно ли и правильно подключены кабели переменного тока;                                       |
| F56 | Напряжение на шине постоянного тока слишком низкое | <ol> <li>Проверьте, не слишком ли низкое напряжение батареи;</li> <li>Если напряжение батареи слишком низкое, используйте PV и сеть для зарядки батареи;</li> </ol>                                                        |
| F58 | Ошибка связи BMS                                   | <ol> <li>связь между гибридным инвертором и батареей BMS отключена, когда «BMS_Err-Stop» активен».</li> <li>если вы не хотите, чтобы это происходило, вы можете отключить элемент «BMS_Err-Stop» на ЖК-дисплее.</li> </ol> |
| F63 | ARC fault                                          | <ol> <li>Обнаружение неисправности ARC предназначено только для рынка США;</li> <li>Проверьте кабельное соединение фотоэлектрического модуля и устраните неисправность;</li> </ol>                                         |



Под руководством нашей компании клиенты возвращают наши продукты, чтобы наша компания могла предоставить услуги по обслуживанию или замене продуктов той же стоимости. Клиенты должны оплатить необходимые перевозки и другие связанные с этим расходы. Любая замена или ремонт продукта покрывает оставшийся гарантийный период продукта. Если какая-либо часть изделия или изделия заменяется самой компанией в течение гарантийного срока, все права и интересы в отношении замененного изделия или компонента принадлежат компании.

Заводская гарантия не распространяется на повреждения по следующим причинам:

- Повреждения при транспортировке оборудования;
- · Повреждения, вызванные неправильной установкой или вводом в эксплуатацию ;
- · Повреждения, вызванные несоблюдением инструкций по эксплуатации, инструкций по установке или инструкций по техническому обслуживанию;
- · Повреждения, вызванные попытками модифицировать, изменить или отремонтировать продукты;
- · Повреждения, вызванные неправильным использованием или эксплуатацией;
  - Повреждения, вызванные недостаточной вентиляцией оборудования;
- · Ущерб, вызванный несоблюдением применимых стандартов или правил безопасности :

Кроме того, нормальный износ или любой другой сбой не повлияют на основную работу продукта. Любые внешние царапины, пятна или естественный механический износ не являются дефектом изделия.

## 8. Ограничение ответственности

В дополнение к гарантии на продукт, описанной выше, государственные и местные законы и правила предусматривают финансовую компенсацию за подключение продукта к сети (включая нарушение подразумеваемых условий и гарантий). Настоящим компания заявляет, что условия продукта и политика не могут и могут только юридически исключать любую ответственность в ограниченном объеме.



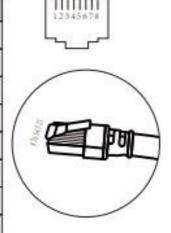
# 9. Технические характеристики

| Модель               | SUN-12K-<br>SG01LP1-EU                              | SUN-14K-<br>SG01LP1-EU     | SUN-16K-<br>SG01LP1-EU |  |  |
|----------------------|-----------------------------------------------------|----------------------------|------------------------|--|--|
| Вход АКБ             |                                                     |                            |                        |  |  |
| Тип Батареи          | Свинцово-кислотный или литий-ионный                 |                            |                        |  |  |
| Диапазон напряжения  |                                                     |                            |                        |  |  |
| батареи              | 40 – 60 B                                           |                            |                        |  |  |
| Максимум. Зарядный   | 220 A                                               | 250 A                      | 290 A                  |  |  |
| ток (А)              | 220 A                                               | 250 A                      | 290 A                  |  |  |
| Максимум. Разрядный  | 220 A                                               | 250 A                      | 290 A                  |  |  |
| ток (А)              | 220 A                                               | 250 A                      | 290 A                  |  |  |
| Стадии зарядки       | 3 эта                                               | па / выравнивание (Equ     | ıalization)            |  |  |
| Внешний датчик       |                                                     |                            | ·                      |  |  |
| температуры          |                                                     | Да                         |                        |  |  |
| Стратегия зарядки    |                                                     |                            |                        |  |  |
| литий-ионного        | Сам                                                 | остоятельная адаптаци      | якBMS                  |  |  |
| аккумулятора         |                                                     |                            |                        |  |  |
| Вход солнечных пане  | лей (PV string)                                     |                            |                        |  |  |
| Максимальная         |                                                     |                            |                        |  |  |
| мощность постоянного | 15600 Вт                                            | 14000 Вт                   | 20800 Вт               |  |  |
| тока (Вт)            | 10000 151                                           | 1 1000 21                  | 20000 2.               |  |  |
| Максимальное         |                                                     |                            |                        |  |  |
| входное напряжение   |                                                     | 370B (125 ~ 500 B)         |                        |  |  |
| постоянного тока (В) |                                                     | 0702 (120 0002)            |                        |  |  |
| Рабочий диапазон     |                                                     |                            |                        |  |  |
| MPPT (B)             | 150 – 425 B                                         |                            |                        |  |  |
| Пусковое напряжение  |                                                     |                            |                        |  |  |
| (B)                  | 125 B                                               |                            |                        |  |  |
| Максимальный         |                                                     |                            |                        |  |  |
| входной ток          | 26A+26A+26A                                         | 26A+26A+26A                | 26A+26A+26A            |  |  |
| постоянного тока (А) | 20/11/20/11/20/1                                    | 20/11/20/11/20/1           | 20/(120/(120/(         |  |  |
| Максимум. Ток        |                                                     |                            |                        |  |  |
| короткого замыкания  | 44A+44A+44A                                         | 44A+44A+44A                | 44A+44A+44A            |  |  |
| (A) ISC              | 77/(177/(177/(                                      | 7-7/(-7-7/(-7-7/(          | 777(177)(177)(         |  |  |
| Количество трекеров  |                                                     |                            |                        |  |  |
| MPPT                 | 3                                                   |                            |                        |  |  |
| Количество МРРТ      | 2+2+2                                               |                            |                        |  |  |
|                      |                                                     | ΖΤΖΤΖ                      |                        |  |  |
| Выход инвертора      |                                                     |                            |                        |  |  |
| Номинальная          | 12000 Вт                                            | 14000 Вт                   | 16000 Вт               |  |  |
| выходная мощность    |                                                     |                            |                        |  |  |
| Максимальная         | 13200 Вт                                            | 15400 Вт                   | 17600 Вт               |  |  |
| активная мощность    |                                                     |                            |                        |  |  |
| Пиковая мощность     | 2 pasa                                              | номинальной мощности       | , 10 секунд            |  |  |
| Номинальное          | 50/60 Гц;                                           |                            |                        |  |  |
| переменное           | облост ц;<br>220/230 В переменного тока (одна фаза) |                            |                        |  |  |
| напряжение сети (В)  | 220/23                                              | C D Hopowicilliolo loka (C | Ana quoa,              |  |  |
| Номинальный          |                                                     |                            |                        |  |  |
| выходной переменный  | 54.5/52.2A                                          | 63.6/60.9A                 | 72.7/69.6A             |  |  |
| ток сети             |                                                     |                            |                        |  |  |
| Максимальный         | 60/57.4A                                            | 70/67A                     | 80/76.5A               |  |  |
| выходной ток (А)     | 55/57. <del>7</del> /\                              | 10/017                     | 00/10.0A               |  |  |
| Максимум.            |                                                     |                            |                        |  |  |
| Непрерывная          |                                                     | 100A                       |                        |  |  |
| передача             |                                                     |                            |                        |  |  |
|                      |                                                     |                            |                        |  |  |

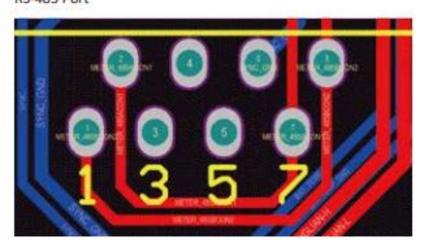


| переменного тока (А) |  |
|----------------------|--|
|                      |  |
|                      |  |

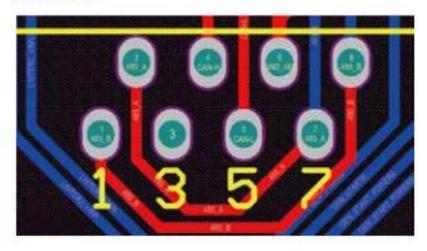



| Текущие<br>гармонические | THD<3% (линейная нагрузка<0,5%)                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------|
| искажения                |                                                                                                                  |
| Эффективность            |                                                                                                                  |
| Макс.                    | 97.60%                                                                                                           |
| Эффективность            | 97.00%                                                                                                           |
| Евро                     | 96.50%                                                                                                           |
| Эффективность            | 00.007.0                                                                                                         |
| Эффективность<br>МРРТ    | 99.90%                                                                                                           |
| Защита                   |                                                                                                                  |
| Обнаружение              |                                                                                                                  |
| дугового замыкания       | Интегрированный                                                                                                  |
| PV                       | ·                                                                                                                |
| Защита от молнии         | Интогрироронный                                                                                                  |
| на входе PV              | Интегрированный                                                                                                  |
| Anti-islanding           | Интегрированный                                                                                                  |
| Защита от обратной       | 1 1                                                                                                              |
| полярности входа         | Интегрированный                                                                                                  |
| PV String                | интегрированный                                                                                                  |
| Обнаружение              |                                                                                                                  |
| изоляционного            | Интегрированный                                                                                                  |
| резистора                | интегрированный                                                                                                  |
| Блок контроля            |                                                                                                                  |
| остаточного тока         | Интегрированный                                                                                                  |
| Защита от                |                                                                                                                  |
| перегрузки по току       | Интегрированный                                                                                                  |
| на выходе                | VIII of priposal illsin                                                                                          |
| Выходная защита от       |                                                                                                                  |
| короткого замыкания      | Интегрированный                                                                                                  |
| Защита от                |                                                                                                                  |
| перенапряжения на        | DC Type II / AC Type II                                                                                          |
| выходе                   |                                                                                                                  |
| Общие данные             |                                                                                                                  |
| Размер (мм, Ш×В×Г)       | 464×798.4×300                                                                                                    |
| Вес (кг)                 |                                                                                                                  |
| Тип установки            | 48.5                                                                                                             |
| ,                        | Настенный                                                                                                        |
| Рабочая                  | 45~60°С, >45°С Снижение номинальных характеристик                                                                |
| Температура              | 20 a, a a a                                                                                                      |
| Пылевлагозащита          | IP65                                                                                                             |
| Уровень шума             | ≤30 дБ(А)                                                                                                        |
| Концепция                |                                                                                                                  |
| охлаждения               | Умное охлаждение                                                                                                 |
| Стандарт                 | VDE4105,IEC61727/62116,VDE0126,AS4777.2,CEI 0 21,EN50549-1,                                                      |
| подключения к сети       | G98,G99,C10-11,UNE217002,NBR16149/NBR16150                                                                       |
| Безопасность ЭМС /       | IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2                                                           |
| стандарт                 | IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2<br>IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2 |
| VIADHANI                 | 1LO/LIN 0 1000-0-1/2/3/4, 1EO/EIN 02 109-1, 1EO/EIN 02 109-2                                                     |
| Интерфейс                | RS485; CAN                                                                                                       |




# 10. Приложение I

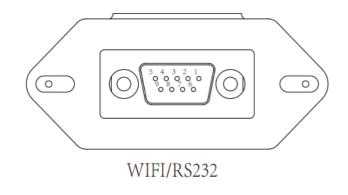
Определение контакта порта RJ45 для BMS


| No. | RS-485 Pin     | CANBus Pin |
|-----|----------------|------------|
| 1   | METER_485BCON2 | 485_B      |
| 2   | METER_485ACON1 | 485_A      |
| 3   | ×=             |            |
| 4   | 155            | CAN-H      |
| 5   | ×=             | CAN-L      |
| 6   | SYNC_GND       | GND_485    |
| 7   | METER_485ACON1 | 485_A      |
| 8   | METER_485BCON2 | 485_B      |



## RS-485 Port



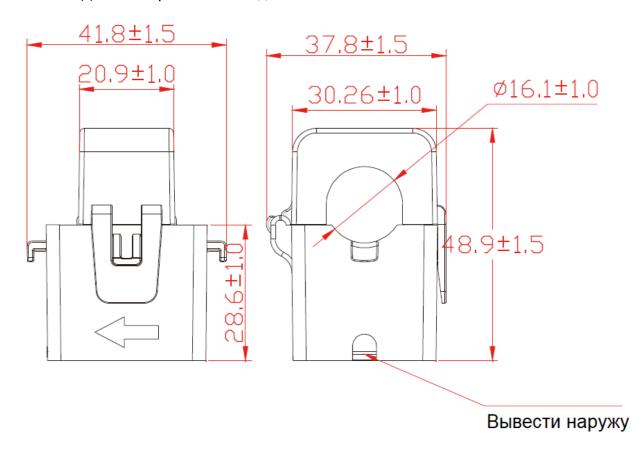

## **CANBus Port**





## **RS232**

| No. | WIFI/RS232 |
|-----|------------|
| 1   |            |
| 2   | TX         |
| 3   | RX         |
| 4   |            |
| 5   | D-GND      |
| 6   |            |
| 7   |            |
| 8   |            |
| 9   | 12Vdc      |




This RS232 port is used to connect the wifi datalogger



# 5. Приложение II

- 1. Размер трансформатора тока с разъемным сердечником (СТ): (мм)
- 2. Длина вторичного выходного кабеля составляет 4 м.







# Гарантийный талон

| Модель инвертора |          | Серийный номер |  |
|------------------|----------|----------------|--|
| Дата продажи     | Продавец |                |  |
| Адрес продавца   |          |                |  |
| Телефон продавца |          |                |  |
| · · · · · —      |          |                |  |

Гарантийные обязательства:

- 1. Срок гарантии на инверторы/зарядные устройства исчисляется со дня выдачи товара Покупателю и составляет 5 лет.
- 2. В случае если вышеупомянутое оборудование выйдет из строя не по вине Покупателя, в течение гарантийного срока, поставщик обязуется произвести ремонт или замену дефектного оборудование без дополнительной оплаты.
- 3. Продавец не предоставляет гарантии на совместимость приобретаемого товара итовара, имеющегося у Покупателя, либо приобретаемого им у третьих лиц.
- 4. Гарантийный ремонт и обслуживание производятся в сервисном центре продавца товара, только при предъявлении настоящего гарантийного талона. Гарантийный срок продлевается на время проведения ремонта.
  - 5. Поставщик снимает с себя гарантийные обязательства в случаях:
- при наличии механических, химических, термических и иных повреждениях оборудования.
- выхода из строя по причинам несоблюдения правил установки и эксплуатации оборудования по данному руководству.
  - вскрытия, ремонта или модернизации техники не уполномоченными лицами.
- 6. Гарантия не распространяется на расходные материалы и другие узлы, имеющиеестественный ограниченный период эксплуатации.
- 7. При обращении с претензиями по поводу работы приобретенной техники, вызванными некомпетентностью покупателя, продавец имеет право взимать плату за проведение консультаций.
- 8. На период гарантийного ремонта аналогичное исправное оборудование не выдается.
- 9. Недополученная в связи с появлением неисправности прибыль и другие косвенные расходы не подлежат возмещению.
- 10. Гарантия не распространяется на ущерб, причиненный другому оборудованию.
- 11. Все транспортные расходы относятся за счет покупателя и не подлежат возмещению.
- 12. Настоящим подтверждаю, что с образцом товара (в т.ч. с техническими характеристиками, формой, габаритами, размером, расцветкой, условиями подключения и правильной эксплуатации) полностью ознакомлен; что мне предоставлена полная информация о проданном мне товаре и мной приобретен именно тот товар, который я имел намерение приобрести. Товар получен. Механических повреждений не имеет, к внешнему виду и комплектации товара претензий не имею, с гарантийным обязательством ознакомлен и согласен.

| Покупатель (ФИС | ,подпись): |
|-----------------|------------|
|-----------------|------------|